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Abstract Being an important and yet a challenging problem, the QoS-based routing in the converging Internet

has received significant attention from the research community. However, most of the QoS-based routing research

is conducted in the context of intra-domain routing, leaving QoS-based inter-domain routing relatively open. In

this paper, we focus on QoS-based inter-domain routing and specifically investigate how to enhance the current

inter-domain routing protocol (BGP) with QoS extensions. To support multiple QoS metrics, BGP speakers have

to advertise multiple routes for each destination. However, this will increase the routing message overhead and

make QoS-aware BGP unscalable. To provide scalability without significantly sacrificing the performance, we

propose path reduction algorithms called contribution based reduction (CBR) algorithms. Extensive simulations

show that the proposed schemes achieve high performance in finding feasible paths with low complexity in terms

of message overhead and computation, making the QoS extension to BGP scalable.
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1 Introduction

The continuous growth in both commercial and public network traffic with quality-of-service (QoS)
requirements is calling for the evolution of the Internet from a simple best-effort network towards a
converged one that can provide various levels of QoS guarantees and/or differentiations to voice, video,
and data applications. To achieve this long sought goal, researchers have been considering a wide spectrum
of approaches ranging from highly revolutionary ones (e.g., ATM) to laissez-fair ones (e.g., no major
changes, use over-provisioning). Since both ends of the spectrum have their serious disadvantages in
practice, it is deemed necessary to develop evolutionary solutions that can incrementally be deployed in
the Internet.

The Internet is a collection of several autonomous systems (ASs) that are owned and operated by
different organizations [1, 2]. This naturally leads to the division of the Internet routing (be it QoS-based
or not) into two different, yet complementary parts, namely intra-domain routing within a single AS,
and inter-domain routing between ASs. Actually, this partitioning is necessary to adequately address
varying design objectives. For example, while intra-domain routing focuses more on the efficient use of
network resources, inter-domain routing is more concerned with scalability. Accordingly, today’s intra-
domain and inter-domain routing protocols (e.g., OSPF [3] and BGP [4]) use two different approaches,
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namely link-state routing and path/distance-vector routing, respectively. However, the current versions
of these protocols have adopted relatively simple solutions without taking any knowledge about the QoS
requirements of applications or the dynamics of network state information into account. Supporting
QoS connections requires the existence of a routing mechanism that computes the QoS paths [5]. To
facilitate the aforementioned evolution of the Internet, it is necessary to improve both intra-domain and
inter-domain routing protocols with QoS extensions [6, 7].

Traditional approach to QoS-based routing is to first acquire the dynamic network state information
using link-state routing and then to compute QoS-based paths using this information along with given
QoS requirements. Naturally, this approach is a good fit in the context of intra-domain routing, and
widely studied in the literature and resulted in QoS-extensions to OSPF [8, 9]. However, this approach
cannot cope with the scalability and policy issues in the context of inter-domain routing. A natural
choice seems to extend BGP with QoS metrics. However, the studies in this direction are still in their
infancies, calling for further research. In [10] the authors propose a new BGP attribute, named the
QOS NLRI, to encode QoS metrics associated with the underlying path. However, this work does not
consider how to determine or use such information. In [11] the authors concentrate on extending BGP
with one metric, namely bandwidth. However, more than 2 QoS metrics are common in the QoS context
and need to be considered. In this paper, we focus on QoS-based inter-domain routing and particularly
consider extending BGP with multiple QoS metrics.

In essence, BGP uses path/distance-vector approach and disseminates an AS-level path to convey just
the reachability information for each destination network. However, for QoS extension, BGP needs to
include the QoS metrics associated with the advertised AS-level path. Note that these QoS metrics can
be either direct metrics (such as the available bandwidth, delay, jitter) or well-defined metrics (such as
the ABI in [11]). Inside an AS, we can assume that each border router pre-computes the QoS metrics of
several paths from that border router to every destination network within that AS. If the intra-domain
protocol is not QoS-aware, the border routers could use measurements to obtain QoS metrics of the paths
within their domain. Border routers then advertise QoS metrics and other reachability information to
their neighbors. Receiving border routers can concatenate their own paths with the received ones and
create several new paths. After enforcing some predefined path selection policies to reject some routes,
BGP advertises remaining AS-level paths and the QoS metrics associated with these to their inside and
outside peers using I-BGP and E-BGP. Since the number of QoS metrics is more than 2, there will
be several routes to one single destination. Advertising all these paths and the associated QoS metrics
would cause significant message overhead. For the scalability reasons, it is necessary to reduce this
routing message overhead while maximizing the success ratio in identifying paths that meet the given
QoS requirements.

In response to this, we propose multi-constrained “path reduction” algorithms called contribution based
reduction (CBR) algorithms. In essence, the proposed CBR algorithms try to minimize the number of
QoS-based routes advertised by BGP while maximizing the feasibility region covered by the advertised
paths. Specifically, the proposed algorithms select L multi-constrained paths from N ones (L < N) such
that the selected L paths are able to maximize the probability of satisfying various QoS routing requests
that would be supported if all the underlying paths were advertised.

When developing and evaluating the proposed CBR algorithms, we consider an Optimal algorithm that
tries all the possible combinations of L out of N paths and selects the best combination that maximizes
the feasibility region. Therefore, we first present the Optimal algorithm. The key disadvantage of this
algorithm is its high computational complexity. To reduce this complexity while providing the comparable
performance to the Optimal algorithm, we propose two algorithms: 1) the incremental contribution
algorithm (denoted by ContriInc); and 2) the improved incremental contribution algorithm (denoted by
ImprovedInc). In essence, both algorithms try to select the least number of paths that make the greatest
contribution in terms of covering the underlying QoS feasibility region of all paths. Using simulations, we
show that our algorithms provide good performance compared to the Optimal while significantly reducing
the message overhead and computational complexity.

The rest of this paper is organized as follows. We present related work in section 2. In section 3, we
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discuss a general framework that can be used to extend BGP with QoS. In section 4, we formulate the
path reduction problem and describe an upper-bounded optimal algorithm, the proposed CBR algorithms,
and the related concepts. In section 5, we evaluate our schemes using extensive simulations. Finally, we
conclude this paper in section 6.

2 Related work

With respect to the QoS extension to BGP, some related work has been done. Bonaventure [12] proposes
a flexible QoS attribute that can be used to distribute QoS information with BGP. In [10] the authors
propose a new BGP attribute, named the QOS NLRI, to encode QoS metrics associated with the un-
derlying path. In [13], a set of BGP attributes, i.e., Traffic Engineering Weights, are defined to allow an
ISP to indicate its traffic engineering preferences when announcing routes. However, none of these works
consider how to determine or use such information. Fei and Gerla [14] extend MBGP (multiprotocol
extension to BGP4) for inter-domain QoS Multicast. However, this work does not consider the problem
of routing message overhead and the scalability. Based on statistical property in QoS routing, the authors
[11] concentrate on extending BGP with one metric, namely bandwidth. However, single metric does not
contain sufficient information to assess whether user QoS requirements can be met or not [15]. Therefore,
more than 2 QoS metrics are common in the QoS context and need to be considered.

On the other hand, in the area of intra-domain routing, QoS-extensions to OSPF [8, 9] have been well
studied. Furthermore, many multi-constrained QoS routing algorithms based on intra-domain routing
are proposed to find a feasible path that satisfies multiple constraints. For 2-constrained problems, Jaffe
[16] proposes a distributed pseudo polynomial algorithm with a time complexity of O(n5b lognb), where
n is the number of nodes and b is the maximum weight of a link. Jaffe also proposes a polynomial
time heuristic based on the linear function g(p) = a1w1(p) + a2w2(p). In order to solve the delay-
constraint least cost (DCLC) problem, some approximate algorithms are proposed in [17, 18]. For an
arbitrary ε > 0, these algorithms can find a path in polynomial time. Not only is the delay constraint
satisfied in the path, but also its cost is less than (1 + ε) times the optimal cost. In addition, based
on some specific scheduling schemes, dependencies among QoS parameters exist. Then the original NP-
complete multi-constrained problem can be reduced to the standard shortest path problem [19, 20]. As
for the general multi-constrained problem, the tunable accuracy multiple constrains routing algorithm
(TAMCRA) [21] and its reformation the self adaptive multiple constraints routing algorithm (SAMCRA)
[22] try to minimize the nonlinear function gλ(p) =

∑k
l=1(wl(p)/cl)λ. Particularly, the former is designed

for the PNNI protocol and the latter for IP networks. Aiming to solve the multi-constrained optimal path
problem, Korkmaz [23] proposes an online heuristic approach called H MCOP, which optimizes both the
nonlinear function gλ(p) (for feasibility) and the primary function c(p) (for optimality). Recently, off-
line/precomputation-based methods have been proposed as an instrument to facilitate scalability, improve
response time and reduce computation load on network elements [24]. For the off-line/precomputation
solutions, Yuan [25] proposes a limited granularity heuristic and a limited path heuristic for solving the
multi-constrained path (MCP) problem, using the extended Bellman-Ford algorithm. Additionally, the
multi-constrained energy function-based precomputation algorithm (MEFPA) by Cui [26] is specially
designed for routing precomputation. By precomputation, this algorithm figures out a QoS routing table
that contains multiple feasible paths for every possible multi-constrained QoS requests. However, without
inter-domain QoS routing support, all these intra-domain based schemes/algorithms cannot be deployed
in a large scale, since the routing message overhead and path computation complexity are quite high
when the network size becomes large.

In this paper, we propose a new scalable extension to BGP with multiple metrics and give the big
picture that well integrates the inter-domain and intra-domain routing together.

3 Scalable QoS extension framework

In this section, we describe a general framework to introduce multiple QoS metrics into BGP. Consider
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Figure 1 BGP scenario.

Figure 1 for a typical network architecture at BGP level. The current Internet consists of ASs in which the
routers are classified as the border routers (the black dots in Figure 1) and the internal routers (the white
dots in Figure 1). Currently, no metric is associated with the links. Only the reachability information is
exchanged between ASs. In the conventional BGP, the advertisements propagated between BGP routers
are formatted in the UPDATE message, which mainly contains the destination addresses, the list of ASs
traversed by the UPDATE message (AS PATH), and the next hop address (NEXT HOP).

When extended with multiple metrics, we envision that each link (say e) will be associated with K

independent general weights, w1(e), w2(e), . . . , wK(e), where wl(e) ∈ R
+ (1 � l � K). Accordingly, each

path (say p) will also be associated with K weights, of which the lth (1 � l � K) is denoted as wl(p). Each
weight represents a practical QoS metric, either a direct metric (such as the available bandwidth, delay,
cost, etc.) or a well-defined metric (such as the ABI [11]). To inform other nodes about the multiple QoS
metrics associate with a path, QoS-extended BGP must include multiple (say K) QoS metrics into the
UPDATE message. Then these QoS metrics are advertised along with the path information in both intra-
AS and inter-AS manners using I-BGP and E-BGP with QoS extensions. During these advertisements,
every router figures out its paths leading to every destination. Although we focus on BGP extension
only, BGP will definitely cooperate with some interior gateway protocol (IGP) used inside an AS. For
integrity, we describe the big picture in three aspects: IGP, E-BGP and I-BGP.

In each AS, we run an IGP which may or may not be QoS-aware. In a QoS-aware AS, due to multiple
metrics, there may be multiple good paths from a source node to one single destination node. Consider
two paths: p1 with 1 ms delay and 0.1% loss rate, p2 with 0.5 ms delay and 0.5% loss rate. p2 is better
than p1 in terms of delay, but p1 is better than p2 in terms of loss rate. We cannot simply tell which
path is better, so both are good paths. Therefore, if the IGP inside an AS is QoS-aware, we allow each
node to precompute multiple internal paths to every node within that AS. In order to reduce the routing
message overhead, we must restrict the number of the internal paths to every node to an acceptable
level, say L (L � 1). Then IGP communicates the information about the L paths and their related QoS
metrics to BGP. So each border router will know L paths to each internal node within that AS. Likewise,
each internal node will know L paths to each border router within that AS, as well. If the IGP is not
QoS-aware, we could use measurements to obtain QoS metrics about the paths between every two nodes
within the same AS. For example, we can use CapProbe [27] or Pathrate [28] to obtain the bandwidth
capacity, and Ping for delay or delay jitter. Then each border router knows only one path to each internal
node within that AS and each internal node knows only one path to each border router.

Among different ASs, the external BGP (E-BGP) is used to exchange information about paths and
related QoS metrics. Border routers (using E-BGP with our QoS extension) within an AS will advertise
L precomputed paths for each destination to their neighbors that are the border routers in other ASs.
Note that a particular case is that, if an AS is not QoS-aware, border routers within that AS will advertise
only one path for each destination node which is within the same AS to their peers in different ASs.

The internal BGP (I-BGP) runs among routers within the same AS. Using I-BGP with our QoS
extension, a border router (say X) will send the externally-learned paths to internal nodes (e.g., X may
receive L paths for a destination (d) from another AS and sends them to internal nodes). Each node (say
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u) knows L paths from itself to that border router (X) and now it learned L paths from X to a given
destination (d). So each node (u) can concatenate L (u − X) and L (X − d) paths and have L ∗ L = L2

(u − d) paths. If a node receives paths from other border routers as well, then a node will have at most
B ∗L2 paths, where B is the number of border routers within the same AS. Note such a particular case,
if that AS is not QoS-aware, each internal node (u) still obtains only one path to each destination (d)
after this routing message exchange. Anyway, the number of obtained paths in border routers is large.
We denote this number as M (1 � M � BL2). After a node obtains M paths, it will first enforce
some predefined path selection policies to reject some paths and thus reduce M to N (1 � N � M).
These policies may be the commercial relationships between ASs, the number of hops in terms of AS,
the multiple exit discriminator, etc. [11]. If all the N paths are propagated to other ASs, the increased
routing message overhead may affect the scalability of BGP. To reduce the number of routes advertised
by BGP routers, we propose two path reduction algorithms in section 4.

Our proposed path reduction algorithms are executed to further reduce the number of paths to L

(1 � L � N). At the same time, our algorithms also consider the routing success ratio. Among multiple
paths, our algorithms select L of them that maximize the routing success ratio. Afterwards, each node
installs the L selected paths into the local forwarding table, and each border router further propagates
such routing results to neighboring ASs.

4 Path reduction algorithms

4.1 Problem formulation

The problem is to select L out of N paths such that the selected paths will maximize the probability
of satisfying various QoS routing requests that would be supported if all the underlying paths were
advertised. Before formally defining this problem, we introduce some notations and key concepts.

The notation w(p) = (w1(p), w2(p), . . . , wK(p)) (K � 2) denotes the weight vector of path p and
the notation c = (c1, c2, . . . , cK) denotes the QoS constraint vector. Notation w(p) � w(q) denotes
wl(p) � wl(q) for all 1 � l � K. Other relational operators <, =, > and � are defined similarly.

Definition 1 (Multi-constrained path p). Given a directed graph G(V, E), a source node s, a destination
node t and K QoS constraints represented by a constraint vector c = (c1, c2, . . . , cK), the path p = s →
v1 → v2 → · · · → t is called a multi-constrained path (MCP), if w(p) � c.

Definition 2 (QoS request space S). Given a source node s, a destination node t, a constraint vector
c = (c1, c2, . . . , cK) and K maximum values C1, C2, . . . , CK for c1, c2, . . . , cK , the set S(C1, C2, . . . , CK) =
{(c1, c2, . . . , cK) | 0 � c1 � C1, 0 � c2 � C2, . . . , 0 � cK � CK} is called the QoS request space from s to
t. We write S in brief. From now on, all concepts in this paper are discussed in the QoS request space
S. For convenience, we could write Cl(p) = Cl for all 1 � l � K when point p ∈ S(C1, C2, . . . , CK).

Definition 3 (Feasible region of a path F (p)). Given the QoS request space S and a path p from source
s to destination t with a weight vector w(p) = (w1(p), w2(p), . . . , wK(p)), the set F (p) = {c | c ∈ S, c �
w(p)} is called the feasible region of path p in S.

Definition 4 (Feasible region of a path set F (P〈s,t〉)). Given the QoS request space S from source s to
destination t and a path set P〈s,t〉 = {p1, p2, . . . , pN} from s to t, the feasible region of path set P〈s,t〉 in
S is defined as

F (P〈s,t〉) =

⎧
⎪⎪⎨

⎪⎪⎩

φ, P〈s,t〉 = φ,
N⋃

i=1

F (pi), else.
(1)

According to Definitions 2, 3 and 4, the QoS request space S is a finite region of the K-dimensional
space. Any path p can be represented by a point in S and the weight vector w(p) of p is the coordinate
of the point. Likewise, any QoS request c can also be represented by a point in S. If c ∈ F (p), path p is
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Figure 2 QoS request space S.

a feasible multi-constrained path that satisfies the request c. If c ∈ F (P〈s,t〉), there must exist a path in
P〈s,t〉 that satisfies the request c.

To illustrate the above concepts when K = 2, consider Figure 2. Rectangular region OABC represents
a QoS request regtion S(C1, C2), and paths p1 and p2 are respectively represented by a point in S.
Region BEp1D represents the feasible region of path p1, i.e. F (p1); while region BMp2Lp1D represents
the feasible region of path set {p1, p2}, i.e. F ({p1, p2}).

Although any path can be represented by a point in the QoS request space, there may not be any real
path that corresponds to a point in the QoS request space. However, similar properties hold for both
a point and a path. For instance, the concept of feasible region can be defined with respect to either a
path or a point. Therefore, in this paper, a path is regarded as equivalent to a point and all path-related
concepts also applies to a point in the QoS request space. We shall use paths and points interchangeably
in the rest of this paper.

Definition 5 (Intersection of paths p1 ∧ p2). Given two paths p1 and p2 with weight vectors w(p1) and
w(p2), a path (or a point in S) p′ is called the intersection of p1 and p2 if wl(p′) = max{wl(p1), wl(p2)}
for all 1 � l � K, where wl(p′) is the lth element of the weight vector (or coordinate) of path p′. We
write as p′ = p1 ∧ p2.

Definition 6 (Intersection of path and path set p ∧ P〈s,t〉). Given a path p and a path set P〈s,t〉 =
{p1, p2, . . . , pN}, the intersection of p and P〈s,t〉 is defined as

p ∧ P〈s,t〉 =

{
φ, P〈s,t〉 = φ,

{p ∧ p1, p ∧ p2, . . . , p ∧ pN}, else.
(2)

According to Definitions 5 and 6, the intersection of two paths is also a path (or a point) while the
intersection of a path and a path set is a set of paths (or points), so the concept of feasible region can
still apply to the intersection of two paths or of a path and a path set. In Figure 2, the intersection of p1

and p2 is the point marked by L, whose feasible region is BELN .

Definition 7 (Capacity of feasible region Ψ(F (P〈s,t〉))). Given the QoS request space S(C1, C2, . . . , CK)
from source s to destination t and a path set P〈s,t〉 = {p1, p2, . . . , pN}, the capacity of feasible region for
P〈s,t〉 is defined as follows:

(i) If P〈s,t〉 = φ,
Ψ(F (P〈s,t〉)) = 0. (3)

(ii) If P〈s,t〉 contains only one path p, i.e. P〈s,t〉 = {p},

Ψ(F (P〈s,t〉)) = Ψ(F ({p})) =
K∏

l=1

(Cl − wl(p)). (4)
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(iii) If P〈s,t〉 contains more than one path, we arbitrarily select a path p′ ∈ P〈s,t〉 and then P ′
〈s,t〉 =

P〈s,t〉 − {p′} is obtained. In this case, we define

Ψ(F (P〈s,t〉)) = Ψ(F (P ′
〈s,t〉)) + Ψ(F ({p′})) − Ψ(F (p′ ∧ P ′

〈s,t〉)). (5)

Definition 8 (Optimal path reduction problem (OPR)). Given the QoS request space S from source
s to destination t and a path set P〈s,t〉 = {p1, p2, . . . , pN}, the problem is to find a subset π ⊆ P〈s,t〉 with
L (L � N) elements such that

π = arg max
π⊆P〈s,t〉

Ψ(F (π)). (6)

In Definition 7, the concept of capacity intuitively implies a measure of space occupied by the feasible
region of a path set in the QoS request space. Given a path set, if the multi-constrained QoS requests
are uniformly distributed in the QoS request space, the routing success ratio can be represented as the
capacity of the feasible region of the path set divided by the capacity of the whole QoS request space. In
fact, the capacity is exactly the area in the case of K = 2. As displayed in Figure 2, given the path set
{p1, p2}, the routing success ratio can be represented as the area of region BMp2Lp1D (i.e. F ({p1, p2}))
divided by the area of the QoS request space OABC. Therefore, the greater the capacity of feasible
region is, the more likely the corresponding path set satisfies the QoS constraints that would be satisfied
by all the underlying paths. Thus, the goal in the OPR problem is to select L out of N given paths in
order to maximize the capacity of feasible region for the path set composed of the selected L ones. In
order to solve the OPR problem, we will present an optimal algorithm in subsection 4.3 and propose two
contribution based reduction (CBR) algorithms in subsection 4.4. Because all three algorithms need to
compute the capacity of feasible region of a path set as a sub-procedure, we first discuss how to figure
out this capacity in subsection 4.2.

4.2 Computation of capacity of feasible region (Capacity and ImprovedCapacity)

In this subsection, we prepare two algorithms to compute the capacity of feasible region: Capacity and
ImprovedCapacity.

4.2.1 Capacity algorithm

As shown in Figure 3, the algorithm Capacity is used to calculate the capacity of feasible region for the
give path set (say PATH0). It is a recursive procedure and can be roughly divided into three parts:

(i) A path p0 is arbitrarily selected from PATH0 and its capacity of feasible region is figured out (lines
1–5).

(ii) The entire QoS request space is cut into 2K small request spaces along the K dimensions of p0 and
at the same time any path is cut into different small spaces (lines 6–25).

(iii) In all small spaces except the one p0 belongs to, the capacity of feasible region for every path set
is computed recursively, and then the sum of these capacities plus the capacity of feasible region of p0 is
just the expected result (lines 26–30).

Note that variable nSeq(p) in Figure 3 represents the serial number of the small request space to which
p belongs.

Let us now consider the computational complexity of the Capacity algorithm.

Theorem 1. The worst-case time complexity of Capacity algorithm is O( (2K−1)N+1

(2K−2)2 ).

Proof. Let C(N) represent the number of comparison times needed by the algorithm Capacity(PATH0)
when set PATH0 contains N paths. Obviously C(0) = 0. One path can be cut into 2K new paths at
worst, so we get 2K(N − 1) new paths after one path is removed from the original N paths and used to
cut the left N − 1 paths. These 2K(N − 1) paths are then distributed into 2K small QoS request spaces,
so there are (N − 1) paths in each small space. At the same time, we consider the loop from lines 9 to
22 in Figure 3. Whenever the outer loop is finished, the number of paths doubles. Therefore, the total
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Capacity(PATH0)

1) IF(PATH0 == φ) 16) nSeq(p copy2)+ = 2l−1

2) RETURN 0 17) Cl(p copy1) = wl(p0)

3) Arbitrarily select a path p0 from PATH0 18) Add p copy1 into PATH1

4) Delete p0 from PATH0 19) Add p copy2 into PATH1

5) p0 Capacity =
∏K

l=1(Cl(p0) − wl(p0)) 20) ELSE

6) FOR EACH path p in PATH0 21) nSeq(p)+ = 2l−1

7) nSeq(p) = 0 22) Add p into PATH1

8) PATH1 = φ 23) Swap PATH0 and PATH1

9) FOR(l = 1; l � K; l + +) 24) FOR EACH path p in PATH0

10) FOR EACH path p in PATH0 25) Add p into PATH[nSeq(p)]

11) Delete p from PATH0 26) cpty = p0 Capacity

12) IF(wl(p) < wl(p0)) 27) FOR(n = 0; n < 2K − 1; n + +)

13) p copy1 = p 28) capacityV [n] = Capacity(PATH[n])

14) p copy2 = p 29) cpty+ = capacityV [n]

15) wl(p copy2) = wl(p0) 30) RETURN cpty

Figure 3 Computation of Ψ(F (PATH0)).

number of comparison times here is (N − 1) + 21(N − 1) + · · ·+ 2K−1(N − 1) = (2K − 1)(N − 1). Now,
the recurrence relation (i.e., difference equation) can be derived as follows:

{
C(N) = (2K − 1)(N − 1) + (2K − 1)C(N − 1),

C(0) = 0,

C(N) =
(2K − 1)N+1

(2K − 2)2
− (2K − 1)

2K − 2
N − 2K − 1

(2K − 2)2
. (7)

In (7), C(N) is dominated by the first term (2K−1)N+1

(2K−2)2 , so the worst-case time complexity of Capacity is

O( (2K−1)N+1

(2K−2)2 ).
According to Theorem 1, the Capacity algorithm has exponential complexity in the worst case. In

order to reduce the complexity, we propose the ImprovedCapacity algorithm in the next subsection.

4.2.2 ImprovedCapacity algorithm

This ImprovedCapacity algorithm is based on the following theorem:

Theorem 2. Suppose that P〈s,t〉,N = {p1, p2, . . . , pN} is a path set from source s to destination t,
subset SUBi

l (P〈s,t〉,N ) = {pr1, pr2, . . . , prl} ⊆ P〈s,t〉,N exactly contains l paths (1 � l � N, 1 � i � Cl
N ),

and notation INS(SUBi
l(P〈s,t〉,N )) = pr1 ∧ pr2∧, . . . ,∧prl. Then

Ψ(F (P〈s,t〉,N )) =
N∑

l=1

(−1)l−1

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N )))). (8)

Proof. We use mathematical induction with respect to N . When N = 1, the LHS of (8) = Ψ(F (P〈s,t〉,1))
= Ψ(F (p1)); while the RHS of (8) = (−1)1−1Ψ(F (INS(SUB1

1(P〈s,t〉,1)))) = Ψ(F (p1)). Therefore, eq.
(8) is satisfied by N = 1.

Suppose (8) is satisfied by N , then we show (8) is also satisfied by (N + 1) as follows:

Ψ(F (P〈s,t〉,N+1)) = Ψ(F (P〈s,t〉,N )) + Ψ(F{pN+1}) − Ψ(F (pN+1 ∧ P〈s,t〉,N )) (according to (5))

=
N∑

l=1

(−1)l−1

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N )))) + Ψ(F{pN+1})

+
N∑

l=1

(−1)l

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (pN+1 ∧ P〈s,t〉,N ))))
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(according to supposed statement).

On the other hand,

N+1∑

l=1

(−1)l−1

Cl
N+1∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N+1))))

=
N∑

l=1

(−1)l−1

Cl
N+1∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N+1))))

+ (−1)NΨ(F (INS(SUB1
N+1(P〈s,t〉,N+1))))

=
N+1∑

l=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N+1)))) +

N∑

l=2

(−1)l−1

Cl
N+1∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N+1))))

+ (−1)NΨ(F (INS(SUB1
N+1(P〈s,t〉,N+1))))

=
N∑

i=1

Ψ(F (INS(SUBi
1(P〈s,t〉,N )))) + Ψ(F ({pN+1}))

+
N∑

l=2

(−1)l−1

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N+1))))

+
N∑

l=2

(−1)l−1

Cl−1
N∑

i=1

Ψ(F (INS(SUBi
l−1(pN+1 ∧ P〈s,t〉,N)))) + (−1)NΨ(F (INS(P〈s,t〉,N+1)))

=
N∑

l=1

(−1)l−1

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N ))))

+ Ψ(F ({pN+1})) +
N+1∑

l=2

(−1)l−1

Cl−1
N∑

i=1

Ψ(F (INS(SUBi
l−1(pN+1 ∧ P〈s,t〉,N ))))

=
N∑

l=1

(−1)l−1

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N ))))

+ Ψ(F ({pN+1})) +
N∑

l=1

(−1)l

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (pN+1 ∧ P〈s,t〉,N )))).

Therefore,

Ψ(F (P〈s,t〉,N+1)) =
N+1∑

l=1

(−1)l−1

Cl
N+1∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N+1)))),

that is, (8) is satisfied by (N + 1).
Eq. (8) in Theorem 2 provides another method to compute the capacity of feasible region. It is derived

as the sum of N items, so its computation complexity is still high. However, we find that an item has a
decreasing impact on the total sum as l increases in (8). Therefore, we consider an approximation to (8).
Specifically, we define

M(T ) =
T∑

l=1

(−1)l−1

Cl
N∑

i=1

Ψ(F (INS(SUBi
l (P〈s,t〉,N )))), (1 � T � N). (9)

Apparently, M(T ) is an approximation to Ψ(F (P〈s,t〉,N )). Furthermore, the greater T is, the closer
they are. Especially, M(T ) = Ψ(F (P〈s,t〉,N )), when T = N .

The algorithm to compute the capacity of feasible region according to eq. (9) is called Improved-
Capacity. It has an approximation parameter T . When T is small, this algorithm can achieve O(KNT )
complexity.
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4.3 The Optimal algorithm (Optimal)

In order to solve the OPR problem, a common solution is the Optimal algorithm which considers all
possible combinations of L out of N paths (totally CL

N combinations). When the Optimal considers a
certain combination, it will call the sub-procedure Capacity(PATH0) that appears in subsection 4.2.1,
to calculate the capacity of feasible region of PATH0, where PATH0 is the set of L paths determined by
the current combination. As the Optimal considers all combinations, it is able to exactly select the one
with maximum capacity of feasible region. Therefore, the Optimal is regarded as a reference point (upper
bound) in our evaluation. The key disadvantage of the Optimal is its high computational complexity, i.e.,
O(CL

N | Capaticy |), where | Capacity | is the complexity of the sub-procedure Capaticy. This makes it
impractical.

4.4 Contribution based reduction algorithms (ContriInc and ImprovedInc)

In this subsection, we propose two contribution based reduction (CBR) algorithms: the ContriInc and
ImprovedInc algorithms, both of which are based on the following two key concepts.

Definition 9 (Contribution region C(p; P〈s,t〉)). Given the QoS request space S from source s to desti-
nation t, a path set P〈s,t〉 = {p1, p2, . . . , pN} and a path p �∈ P〈s,t〉, the set C(p; P〈s,t〉) = F (p)− F (P〈s,t〉)
is called the contribution region of p towards P〈s,t〉.

Definition 10 (Capacity of contribution region). Given the QoS request space S from source s to
destination t, a path set P〈s,t〉 = {p1, p2, . . . , pN} and a path p �∈ P〈s,t〉, the capacity of contribution
region of p towards P〈s,t〉 is defined as δ(C(p; P〈s,t〉)) = Ψ(F (p)) − Ψ(F (p ∧ P〈s,t〉)).

Definition 9 describes how to determine the contribution of path p towards the feasible region of
path set P〈s,t〉. Definition 10 gives a measure to quantify such a contribution. According to Definition
10, the capacity of contribution region of p is just its capacity of feasible region when P〈s,t〉 is empty.
Moreover, from Definitions 7 and 10, it comes to the conclusion that Ψ(F ({p}∪P〈s,t〉)) = Ψ(F (P〈s,t〉))+
δ(C(p; P〈s,t〉)) when p �∈ P〈s,t〉.

We now describe one of the proposed contribution based reduction (CBR) algorithms, namely the
incremental contribution algorithm (ContriInc). The pseudo code of ContriInc is shown in Figure 4(a).
In essence, ContriInc selects L paths from set PATH0 and stores them into PATH1 such that each of the
selected paths makes the maximum capacity of contribution to so far selected paths (i.e., PATH1). To
compute the contribution increment of each path p in PATH0 towards PATH1 (i.e., δ(C(p; PATH1))),
ContriInc calls the sub-procedure ContriCapacity (line 6). As shown in Figure 4(b), ContriCapacity
computes PATH1 = p ∧ PATH0 (lines 1–5), Ψ(F (p0)) (line 6), and Ψ(F (PATH1)) (line 7) by calling
the sub-procedure Capacity.

Due to its iterative call to the Capacity algorithm proposed in subsection 4.2.1, the worst-case com-
plexity of the ContriInc algorithm is also exponential with respect to the problem scale, according to The-
orem 1. The bottleneck in the complexity of the ContriInc algorithm lies in the sub-procedure Capac-
ity. For the reason above, we propose an improved CBR algorithm ImprovedInc(T) with polynomial
complexity.

If the algorithm in Figure 4(b) calls ImprovedCapacity (subsection 4.2.2) instead of Capacity (line
7) and the other parts in Figure 4 remain unchanged, the improved version of ContriInc is obtained,
denoted as ImprovedInc(T), where T is a parameter representing the computational approximation of
the algorithm. In fact, ImprovedCapacity reduces computation complexity by introducing approximation.

We now analyze the computation complexity of the ImprovedInc algorithm when T is small. In Figure
4(a), the bottleneck in complexity lies in calling ContriCapacity (line 6). In Figure 4(b), the complexity of
ContriCapacity can be restricted to O(KnT ) when PATH1 contains n paths and T is small. Therefore,
the complexity of ImprovedInc is O(

∑L−1
i=1 KiT ) = O(KL(T+1)). Extensive simulations in section 5 show

that the ImprovedInc algorithm achieves very high performance when T = 2. Thus, the ImprovedInc can
be restricted to O(KL3) complexity in practice.



CUI Yong, et al. Sci China Inf Sci October 2010 Vol. 53 No. 10 1957

ContriInc() ContriCapacity(p0, PATH0)

1) PATH0 = {p1, p2, . . . , pN} 1) FOR EACH p in PATH0

2) PATH1 = φ 2) FOR(l = 1; l � K; l + +)

3) FOR(i = 0; i < L; i + +) 3) IF(wl(p) < wl(p0))

4) maxCpty = −1 4) wl(p) = wl(p0)

5) FOR EACH p in PATH0 5) Add p into PATH1

6) cpty=ContriCapacity(p,PATH1) 6) cpty1 =
∏K

l=1(Cl − wl(p0))

7) IF(cpty > maxCpty) 7) cpty2=Capacity(PATH1)

8) maxCpty = cpty 8) RETURN cpty1 − cpty2

9) maxp = p

10) Add maxp into PATH1

11) Delete maxp from PATH0

12) RETURN PATH1

(a) (b)

Figure 4 The incremental contribution algorithm (ContriInc). (a) Main routine; (b) Sub-procedure: computation of

δ(C(p0; PATH0)).

Figure 5 Relationship of function call among algorithms.

4.5 Brief summary of algorithms

Now we make a summary of the relationship of function calls among algorithms, as shown in Figure 5.
The following facts can be found in Figure 5: When ContriCapacity calls Capacity, we get the incremental
contribution algorithm (ContriInc); When ContriCapacity calls ImprovedCapacity, we get the improved
incremental contribution algorithm (ImprovedInc).

5 Performance evaluation

Simulations in this section include two parts: In part 1, we evaluate the performance and running time
of the proposed CBR algorithms; in part 2, we evaluate the success rate and message overhead of the
proposed QoS extension schemes to BGP.

5.1 Evaluation of path reduction algorithms

We compare two CBR algorithms, i.e., the incremental contribution algorithm (ContriInc) and its im-
proved version (ImprovedInc), with the Optimal algorithm, in terms of performance and running time.

We randomly generate N paths, i.e., wl(pi) ∼ Uniform(1, Cl) for all 1 � l � K and 1 � i � N . In
this section of simulations, we set Cl = 1000 for all 1 � l � K. In order to reduce errors, each simulation
is repeated 100 times and the average results are used. When evaluating running times, we run each
algorithm in a PC with a Pentium (R) 4 CPU of 3.00 GHz, 1.00 GB RAM and Windows XP system.

In order to evaluate the performance of each algorithm, we define capacity ratio as the capacity of
feasible region of the selected L paths divided by the capacity of feasible region of all N paths. The capa-
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Figure 6 Comparison when L is varied. (a) Capacity ratio; (b) running time.

Figure 7 Comparison when K is varied. (a) Capacity ratio; (b) running time.

city ratio changes in [0, 1] and that of the Optimal algorithm should be always the greatest of all algorithms
(upper bound).

In Figure 6, we compare the capacity ratio and running time of all the three algorithms when L

changes. N = 24, K = 3 and T = 2 in simulations. Figure 6(a) shows that the ContriInc algorithm
almost achieves the same capacity ratio with Optimal and the capacity ratio of ImprovedInc is slightly
smaller. When L increases from 1, the capacity ratio of each algorithm rapidly rises and when L = 5 or
6, it has been close to one. In Figure 6(b), the y-axis represents the running time, in logarithmic scale.
The running time of Optimal is much longer than the other two algorithms in the mass, especially when
L approximates to N/2. On the contrary, ImprovedInc has the shortest running time.

In Figure 7, we compare the capacity ratio and running time of all algorithms when K changes. Note
that the y-axis in Figure 7(b) is in logarithmic scale. N = 16, L = 5 and T = 2 in simulations. From
Figure 7(a), we find that the capacity ratio of each algorithm just decreases slightly as K increases.
While Figure 7(b) shows that it takes every algorithm widely different running time. ImprovedInc runs
much faster than the other two algorithms. Furthermore, the running time of Optimal or ContriInc is
exponential with respect to K, but ImprovedInc is insensitive to K.

In Figure 8, we compare the capacity ratio and running time of all algorithms when T changes. Note
that the y-axis in Figure 8(b) is in logarithmic scale. N = 16, L = 10 and K = 3 in simulations. Because
Optimal and ContriInc have nothing to do with T , the capacity ratio and running time of them basically
remains constant when T changes. From Figure 8(a), we find that the capacity ratio of ImprovedInc has
an upward trend when T increases, but it is quite high when T = 2. From Figure 8(b), it can be found
that the running time of ImprovedInc rises relatively fast as T increases and eventually exceeds that of
ContriInc, but ImprovedInc has the lowest time complexity when T � 2. Therefore, it is ideal to let
T = 2 in practice.

5.2 Evaluation of the QoS extension schemes to BGP

We implement a simulator to evaluate the QoS routing performance and routing message overhead for
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Figure 8 Comparison when T is varied. (a) Capacity ratio. (b) running time.

inter-domain and intra-domain routing systems. The simulator is based on a 2-level hierarchical topology
model. In the simulations, the Internet topology generator BRITE [29] is used to generate 2-level top-
down topologies. Both the inter-AS and the intra-AS topologies are generated using Waxman [30] model.

For comparison, we simulate four BGP-based routing systems, including our proposed extension to
BGP. The four routing systems are classified according to their different intra-AS routing algorithms and
inter-AS path selection policies:

1. Shortest AS PATH routing (SASP): The standard shortest path algorithm runs within an AS and
the path with the shortest AS PATH is selected in inter-AS routing. This SASP routing is just similar
to the real BGP system.

2. Smallest average of weights routing (SAW): The shortest path algorithm runs with respect to the
average of K (K � 2) weights within an AS and the path with the smallest average of weights is selected
in inter-AS routing.

3. L random paths routing (LRAND): Any multi-constrained QoS routing algorithm can be used to
precompute L (L � 1) paths within an AS and L paths are randomly selected in inter-AS routing.

4. All paths routing (APR): Any multi-constrained QoS routing algorithm can be used to precompute
paths within an AS and all paths are selected in inter-AS routing.

5. Our proposed CBR routing (CBR): Any multi-constrained QoS routing algorithm can be used to
precompute L paths within an AS and L good paths are selected using CBR algorithms in inter-AS
routing.

We first generate a topology with 50 ASs and 50 routers (totally 2500 nodes) within each AS using
BRITE. And then for the topology 10 instances of link weights are generated. Finally, for each instance
of link weights, 1000 routing requests are generated. When link weights are generated, each link weight
wl(e) is uniformly distributed in [0, maxW ]. As for the routing constraints from source s to destination
t, each constraint is randomly selected from [α ∗max W ∗min D(P〈s,t〉), β ∗maxW ∗min D(P〈s,t〉)], where
α ∈ [0, 1], β � 1 and min D(P〈s,t〉) is the shortest distance from s to t. Here α and β are called constraint
factors. For any node (say u), when the CBR simulation is conducted, we choose the ImprovedInc as the
path reduction algorithm for its low complexity. The parameters of the algorithm is as follows: T = 2
and Cl = β ∗ maxW ∗ min D(P〈u,t〉) (1 � l � K), where minD(P〈u,t〉) is the shortest distance from u

to t. Note that the parameter Cl should be set according to the statistical measurement results of each
node in real networks and here it is only a simple estimate for the state of routing requests. Therefore,
our proposed BGP QoS extension and related algorithms may be more powerful in practice than the
simulation results will show. In addition, for LRAND and CBR routing systems, we choose the limited
path heuristic [25] and MEFPA [26] as the intra-AS routing algorithms. For space limit, the results
displayed in this section are only based on the limited path heuristic. However, this choice of intra-AS
QoSR algorithms has little effect on the overall results.

In order to evaluate the performance of each routing system, the success ratio (SR) is defined as the
number of satisfied QoS routing requests divided by the number of all the generated routing requests.
Figure 9(a) shows the success ratio from source s to destination t after the routing message exchange
becomes convergent. It can be found that the CBR routing achieves the biggest success ratio. This is
because the CBR routing can provide multiple paths when L > 1. As L increases, the success ratio of
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Figure 9 Comparison when L is varied. (a) Success ratio; (b) number of UPDATE.

the CBR routing becomes higher but more routing messages are required to be exchanged between BGP
routers. Especially when a new AS is added to an existing network, in order to obtain routing information
about each node in the added AS, UPDATE messages are required to be advertised all over the whole
network until convergence. As shown in Figure 9(b), the y-axis represents the number of UPDATE
messages that are needed to advertise the routing information about one certain destination node. We
found that in simulation the LRAND routing system is difficult to converge when the network becomes
big, so we make the system stop advertising UPDATE messages when the number of total UPDATE
messages reaches 100000. From simulation we found that the number of UPDATE messages is linear to
L in CBR routing and this brings about good scalability of the protocol design. Because the LRAND
routing system is difficult to converge, it requires quite a lot of UPDATE advertisement, much more than
the CBR routing system. From the result we also see that the number of UPDATE messages which APR
routing system advertises also exceeds the maximum limit(100000). Note that the LRAND routing shows
low and unpredictable success ratio in Figure 9(a). And the success ratio of LRAN in Figure 9(a) is not
sampled in the convergence state. Therefore, when multiple metrics/paths are added to BGP, careful
design is required to insure the convergence and scalability. Our path reduction algorithms are apt to
select the same path set every time the path selection process is performed. So the convergence can be
achieved by the CBR system.

We have also studied the success ratio and the number of UPDATEs when K is varied by simulations.
We find that the success ratios of all routing systems slightly decrease as K increases its value. We also
find that the number of UPDATE messages is relatively insensitive to K. The related figures are omitted
here for space limit.

6 Conclusions

In this paper, we studied the problem of inter-domain QoS-based routing and specifically investigated
how to extend BGP to support QoS under multiple metrics. One of the key challenges is how to make
BGP aware of multiple QoS metrics and advertise the underlying routes with different QoS metrics. In
BGP, it is essential to reduce the routing message overhead without significantly sacrificing the perfor-
mance. In response to this, we proposed two contribution based reduction (CBR) algorithms, namely,
the incremental contribution algorithm and its improved version, to perform path selection and reduce
the number of UPDATE messages in BGP.

In the extended BGP, every node within one AS obtains multiple paths to each single destination
through some IGP and the intra-domain QoS routing computation. Afterwards, each border router
within the AS advertises the routing messages about these multiple paths to its peer within a different
AS, using E-BGP with QoS extension. When a border router receives multiple paths from another AS,
it propagates this routing information within its own AS, using I-BGP with QoS extension. After a node
within the same AS receives all alternate paths from every border router, it calls one of the proposed CBR
algorithms to reduce the total number of the paths to an acceptable level. Finally, each node installs the
selected paths into the local forwarding table and further sends such routing results to neighboring ASs.
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In essence, our proposed CBR algorithms try to select the least number of paths that make the greatest
contribution in terms of covering the underlying QoS feasibility region of all paths. Therefore, they can
reduce the number of routes advertised by BGP speakers while maximizing the routing success ratio,
making the QoS extension to BGP scalable.

Under this scalable BGP QoS extension framework, we expect that the traditional protocol systems
be well integrated with QoS schemes to provide new techniques supporting new QoS-oriented service in
the next generation network.
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